

ICTA’07, April 12-14, Hammamet, Tunisia

An Arabic Optical Braille Recognition System

AbdulMalik Al-Salman, Yosef AlOhali, Mohammed AlKanhal, and Abdullah AlRajih

King Saud University and KACST, Riyadh, Saudi Arabia
salman@cci.ksu.edu.sa

Abstract

Technology has shown great promise in providing

access to textual information for visually impaired

people. Optical Braille Recognition (OBR) allows

people with visual impairments to read volumes of

typewritten documents with the help of flatbed

scanners and OBR software. This project looks at

developing a system to recognize an image of

embossed Arabic Braille and then convert it to text. It

particularly aims to build fully functional Optical

Arabic Braille Recognition system. It has two main

tasks, first is to recognize printed Braille cells, and

second is to convert them to regular text. Converting

Braille to text is not simply a one to one mapping,

because one cell may represent one symbol (alphabet

letter, digit, or special character), two or more

symbols, or part of a symbol. Moreover, multiple cells

may represent a single symbol.

1. Introduction

Visually impaired people are part of the society, and

can play an integral role in its prosperity. Therefore, it

has been a must to provide those people with means

and systems through which they may communicate

with the world. These systems should depend on the

sense of hearing or touching. Many systems have been

developed to achieve this purpose; the most famous

system that is based on touching is Braille system.

Braille is a writing system that enables visually people

to read and write through touch using a series of raised

dots to be read with their fingers.

Braille contractions representing groups of letters or

whole words that appear frequently in a language. This

is usually referred to as Grade 2 Braille. The use of

contractions permits faster Braille reading and helps

reduce the size of Braille books, making them

somewhat less cumbersome. Each Braille character or

"cell" is made of 6 dots arranged in a rectangle

comprising 2 columns of 3 dots each as it can be seen

in Figure 1. A dot may be raised at any of the 6

positions, or any combination. Counting the space, in

which no dot is raised, there are 64 such combinations

(that is 26 = 64).

The dimensions of a Braille

dot have been set according to

the tactile resolution of the

fingertips of person. The

horizontal and vertical

distance between dots in a

character, the distance

between cells representing a

word and the inter-line

distance are also specified by

the Library of Congress. Dot height is approximately

0.02 inches (0.5 mm); the horizontal and vertical

spacing between dot centers within a Braille cell is

approximately 0.1 inches (2.5 mm); the blank space

between dots on adjacent cells is approximately 0.15

inches (3.75 mm) horizontally and 0.2 inches (5.0 mm)

vertically. A standard Braille page is 11 inches by 11.5

inches and typically has a maximum of 40 to 43 Braille

cells per line and 25 lines. Braille has been adapted to

write many different languages including Arabic and is

also used for musical and mathematical notation. Note

that both Arabic and English Braille are read from left-

to-right.

For OBR, a Braille document is placed on a

standard scanner and scanned by the OBR program,

which either converts the document into text or saves it

as a formatted Braille file. OBR works with single-side

or double-sided Braille using a single scan.

OBR offers many benefits to Braille users and those

who work with them, facilitating communication,

reducing storage space, and preserving out-of-print

Braille texts. Everyone who works with blind people

and does not read Braille will benefit from using the

OBR. For example: parents, teachers, public

organizations communicating with blind individuals,

and computerized Braille libraries. All people in

workplaces where Braille is used can read Braille

easily by using an OBR.

This paper looks at developing algorithms to

recognize an image of embossed Arabic Braille

Figure 1. Braille
Cell.

 82

material obtained by a regular scanner. Although the

Braille dots have the same color as the background,

they cast soft shadows when scanned with a standard

flatbed scanner. These shadows are used to locate the

dots on the page. As the dots on both sides of the page

are visible from one side, both sides of the page can be

recognized in a single scan. The recognition engine is

capable of processing Braille documents with various

paper colors, number of dots, Braille cell sizes, and

orientations. To convert the Braille cells to text, a

translation engine is needed

2. Literature Review

An OBR system consists of several basic modules

including: image acquisition, image processing, dot

localization and segmentation, and finally dot

recognition and conversion. Among issues that must be

taken into consideration when implementing an OBR

system are factors that negatively influence the

identification process, such as lighting conditions, page

placement in the scanner, and page movement [6].

Image acquisition is the first and most important

step in any pattern recognition system. In OBR

systems data is provided to the system in the form of

images of Braille embossed pages. The process of

acquiring these images digitally can be achieved by

using a number of different equipments such as

scanners or digital cameras, both of which have been

used by developers and researchers [2-4, 7, 9-12].

Image preprocessing is an essential step during

which errors that occurred while the images were taken

are eliminated. Errors include noise, deformation, bad

illumination or blurring. Image preprocessing can be

used for image enhancement by reducing noise,

sharpening images, or rotating a skewed page. The

algorithms used differ from one system to another

depending on the classification approach followed by

researchers and developers.

An early effort was presented by Mennens et al. in

their work [4]. The authors addressed the problem of

false shadows in the image caused by the fact that

Braille pages are never perfectly flat due to the tension

in the paper’s surface, by subtracting a locally

averaged image from the original. The authors rotate

skewed images by using the deviation over a vertical

projection of the image.

Hermida’s et al. [3] system employed thresholding

before the image is passed on to the Braille dot

extraction module. Their algorithm converts a digital

image of a scanned Braille page into one consisting

mainly of black and white spots denoting the dots. The

thresholds used were adaptively calculated from the

histogram of the input image.

In 1995, Hentzschel and Blenkhorn [2] presented a

system for optical Braille recognition based on twin

shadows approach, which subtracts two images of the

same Braille page, where each image was taken under

different illumination conditions. This helps eliminate

blemish and noise in images caused by the texture of

the paper used. Unlike Blenkhorn’s work [1] presented

in 1994 that solely discussed the classification process,

his work in association with Hentzschel in the

following year addressed the different modules of a

pattern recognition system, including image

processing. In [2], the image-processing module

encompassed a variety of routines, each serving a

different and crucial purpose as using random-noise

reduction filter that was necessary to avoid undesired

emphasis of noise.

In [8], preprocessing consists of two sub-

operations: noise filtering and edge enhancement.

Noise filtering is achieved via a low-pass special

Gaussian filter. Edge detection is achieved using

convolution Sobel kernels.

The approach adopted by Mennens et al. in [4] for

extracting Braille dots is based on several assumptions,

one of which is that a single dot is represented by two

gray level intensities, a light area right above a dark

one. Also their system is designed to recognize a

double-sided Braille page. This approach may produce

false core regions if two dots are vertically neighbors.

The localization and extraction algorithm developed

by Hermida et al. [3] takes a thresholded image

consisting of couples of white and black spots, where

each couple denotes a single Braille dot. Though this

method is easy and quick, it suffers from that: if some

legitimate points are lost, false ones are produced.

The dot localization and extraction technique used

in [2] consists of two steps; the first is image

registration and the second is character segmentation.

The final step of dot extraction is normalization, where

each Braille character is represented by a 2x3 matrix.

Each bit in the matrix denotes a dot in Braille cell.

Deciding whether a bit value is either 0 or 1 is based

on a threshold used to test 1/6 of the cell area.

In 2004, Wong et al. [7] proposed an OBR system

that is capable of recognizing a single sided Braille

page in addition to preserving the format of the

original document in the produced text file. The

algorithm processes the image one row at a time

reducing the computation time significantly.

The dot detection module incorporated in the OBR

system proposed by Oyama et al. [6] in 1997 is

designed to detect both recto and verso Braille dots;

that is detecting dots on both sides of the page. This

 83

was possible due to the difference in light reflectance

between recto and verso dots. A hardware circuit

configuration that corresponds to the equations and

operates in a similar manner was given as well.

Mennens et al. [4] adopted Binary Braille cell sets

as basis for their classifier, which is grouping the dots

and representing each dot by a bit position. The

authors did not elaborate on the comparison method

used to recognize a Braille cell as a certain letter or

digit. The classifier presented by Hermida et al [3]

takes as an input the image produced from the dot

extraction module, where characters are represented as

a group of dots, each dot is in turn represented by a

single bit, with 1 or 0 values. Using this representation,

the Braille-to-ASCII conversion is accomplished.

The system proposed in [1] is based on finite state

approach that operates with a finite number of states

that perceives the correct state, in addition to its ability

to perform both left and right context checking using

matching algorithms. This feature is very important in

determining characters proceeding wildcards. One of

the greatest advantages of this system is that it is

designed in a way to perform the conversion from

Braille to any of the natural languages depending on

the tables provided containing the conversion rules.

The work in [2] did not elaborate on the techniques

used for converting an extracted Braille cell into

natural language characters.

The recognition module in [7] is designed to work

with thresholded images resulting from the half-

character detection module. The classification process

is carried out using a probabilistic neural network.

For interpretation purposes, authors in [8]

determine centriod distances between each dot and its

four possible neighbors. Dots are then grouped into

cells. Based on the boundary coordinates, information

and illumination characteristics, two standard

templates were then constructed to represent the front-

face dots and back-face dots.

To the best of our knowledge, there is only one

commercial OBR software. It is a Windows-based

software that allows reading single and double-sided

Braille documents with a standard scanner [13].

Unfortunately, it does not support the Arabic language

and there is no explanation of the used techniques.

3. The Arabic OBR System

The Arabic OBR system is able to recognize both

single-sided and double-sided Arabic Braille

documents from a single scan. It comprises the

following stages. First, an image of a Braille document

page is obtained using a flatbed scanner. Second, the

image is converted to a gray color. Following that any

white or black frames are cropped. The image is then

thresholded so that only three classes of regions exist:

dark, light and background. In case of having a tilted

paper then de-skewing is applied using a binary search

algorithm. Having labeled each of the different types

of regions, an initial identification of Braille dots is

performed. Finally, Braille cells are then recognized.

Each stage is described below in more detail.

3.1 Converting the Image to Gray Level

Inside a computer system, colored images are stored

in 3-D arrays while gray level images are stored in 2-D

arrays. Dealing with 2-D arrays is much easier and

faster. Therefore, the first step in the proposed system

converts colored scanned images to gray level so that

any pixel value in the image falls within the range 0-

255 as could be seen in Figures 2 and 3.

3.2 Cropping the Image Frame

Some of the scanned images suffer from having

either black or white frames that would affect the

thresholding step coming next. It is a must that those

frames are cropped before proceeding forward. To do

that, the average gray level is calculated for the whole

image and then for each of the rows and columns

separately. Finding a row or column average gray level

that is above or below 15% of the whole image

average gray level is an indication to delete it as

experiences have shown.

3.3 Image Thresholding

This step involves examining each pixel in the 2-D

array representing the scanned Braille document and

classifying it to one of the following three categories:

(1) Elements having values 32 and above are

considered bright and given a threshold value +1. (2)

Elements having values 23 and below are considered

dark and given a threshold value -1. (3) Elements

having values between 23 and 32 are considered gray

and given a threshold value 0.

Figure 2. An example of a part of a colored
scanned Braille document

Figure 3. Gray level of Figure 4

 84

An algorithm was developed to handle the

thresholding. This algorithm works as follows; after

converting the image to gray level and removing

highest and lowest values to leave out distinct values,

the average gray level for the whole image is

calculated. After that both a and b values are calculated

according to the following equations:

a = mean (max(I) + avg) / 2

b = mean (min(I) + avg) / 2;

Where I is an array representing the whole image,

max(I) and min(I) represent the highest and lowest

values respectively in each column of the array I.

The classification parameters L and H are

calculated according to the following equations:

L = avg – (avg – min_avg) / 3

H = avg + (max_avg – avg) /3;

Where min_avg

represents the average of

all values less than b

while max_avg

represents the average of

all values higher than a.

The image is then

classified according to L

and H values (see Figure

4). Values less than L are

considered dark. Values

higher than H are

considered bright. Values

between L and H are

considered gray (background).

Having noticed that the histogram of a scanned

Braille document is represented by the Gaussian

Distribution, we

found that 1.5*σ,

where σ is the

standard

deviation, gives

good results when

finding L and H

values. Image

pixel values

above H are

bright and those blow L are dark (m is the man). See

Figure 5.

3.4 Image De-Skewing

We have developed a binary search algorithm to

correct any de-skewing in tilted scanned images. The

maximum degree of recognizing a de-skewed image is

4 degrees from either the left or the right side. To

calculate the de-skewing degree we have used the

following algorithm:

1. After thresholding the image (stage 3) we select

either the dark or the bright part that resulted from

thresholding and delete the other part.

2. Horizontal projection is performed to count the

number of pixels in each row for the selected part

in the previous step. Then we calculate those rows

having more than 10 points.

3. The image is rotated 4 degrees one time to the left

and one to the right and in each time step (2) is

repeated.

4. Calculating the number of rows in the image in its

three case (right/ left/ middle) we have either of the

two possibilities: (a) if the number of rows for the

right and left side is the same then the image is not

skewed and we stop here (b) if the number of the

rows for the right and left side is different then the

image is skewed and we proceed to step 5.

5. At this step we have two possibilities as well: (a) if

the number of rows in the right side is less than that

for the left side then we set the middle point

calculated in the fourth step to be the new starting

point for the left side. We then calculate the

number of rows for this new middle point for both

the right and left sides, (b) if the number of rows in

the left side is less than that for the right side then

we set the middle point calculated in the fourth step

to be the new starting point for the right side. We

then calculate the number of rows for this new

middle point for both the right and left sides.

6. Repeat steps 4 and 5 as long as half the difference

between the right and left deviation is more than

1/16.

After determining the

deviation degree, we

rotate the original gray

image and then repeat

steps 2 and 3 for the

rotated image. This is

done because if the

image is skewed then

cropping may remove

some of the image parts that constitute Braille cells as

could be seen in Figure 6.

3.5 Dot Parts Detection

Experiences have shown that detection of Braille

dot parts is better than detection of the whole dot. It

was also proven that the average dot height is 8 pixels.

Each dot is composed of a bright and a dark region

with a small space between them. See Figure 7. The

implication is that if the bright region comes at top

where the dark one comes at bottom then this is a recto

dot, the contrary situation results in a verso dot. The

Figure 5. L, H and m values

Figure 4. Image
values

Figure 6. Crop effect
on skewed image

 85

algorithm for dot part detection has the following

steps:

1. Since the average dot height is 8 pixels and each

dot is composed of a dark and a bright region with

a space in between, we will look for any 8 pixels

high column. For each column we are interested

only in the first and second values from top and

bottom.

2. Construct an empty array to hold the points.

3. As indicated before, the value assigned to bright

pixels is +1 and to dark pixels is -1, otherwise 0.

4. A vertical search for dot parts is performed on the

array starting from top to bottom such that:

• If pixel(1)+pixel(2)>0 AND pixel(7)+pixel(8) <0

then this column is part of a recto dot.

• If pixel(1)+pixel(2)<0 AND pixel(7)+pixel(8) >0

then this column is part of a verso dot.

5. In case of having any of the two conditions true we

register that in the array and then go down 12

pixels since this is the vertical space between two

dots.

6. At the end, we will have recto and verso dots as in

Figure 8. Now we can separate them in two arrays.

Errors from previous step may occur. To correct

that we can use either of the following methods:

Local Measure: select the best column within all

columns that are 8 pixels below it.

Global Measure: all columns are classified into

three categories: columns holding recto dots, columns

holding verso dots, or undefined columns.

The second method gave excellent results.

3.6 Whole Dot Detection
This stage involves the following steps:

1. A detected dot should have at least three columns,

less than that is not counted in.

2. An empty array that has the same size of the one

holding dots parts is constructed.

3. We perform a vertical search on the array starting

from up to down, when three parts of a dot that are

not more than 6 pixels apart are found then this is

considered a point. This point is registered at the

corresponding position in the array as 4x4 point.

4. The region holding the detected dot part in the

previous step is deleted so that it will not be

considered in future searches (Detect and Clean.)

Figure 9 shows the dots at the end of the search.

3.7 Braille Cells Recognition
Having identified all possible valid dots, the system

defines the region containing all the dots such that no

dots exist outside this region. To do this, we have to

add each row and column in the array separately then

we take the first and last positive value positions. After

that one of the two following algorithms can be used:

Algorithm 1.

Determine the number of rows and columns in the

defined region. The average line and column width

have been identified as in Figure 10. To calculate the

number of rows and columns we use the following two

equations:

linNum = (yMax - yMin) / 59,

colNum = (xMax – xMin) / 34.7;

Then we can reach the beginning of any cell by

using the line and column number, as in the following

equations:

i = yMin + (lin-1) * 59,

 j = xMin + (col-1) * 34.7;

Algorithm 2.

This algorithm does not depend on fixed lengths for

cells heights and distances between them. The steps

involved here are as follows:

(1) Determine the horizontal projection for the array

holding the dots and then determine the average

distances between the rows holding the dots.

(2) Determine the vertical projection for the array

holding the dots and then determine the average

distances between the columns holding the dots.

Figure 7. Dots thresholding
into bright and dark regions.

Figure 8. Recto and Verso dots

in two different colors.

Figure 9. Recto dots detected from Fig. 8.

 86

(3) Using the horizontal and vertical projections we

can reach any cell. This is because we can consider

any consecutive 3 rows and 2 columns as a cell as long

as the distance between the rows and columns does not

exceed the averages in (1) and (2).

By comparing the two algorithms we found that

even though the latter one does not require fixed

lengths to determine the cells, it is less accurate than

the former one, especially that most Braille documents

use the lengths and distances defined in Figure 10.

After using either of the algorithms, we now have to

convert the cell to binary code. To do that, we first

divide the cell into six regions as in Figure 11. Then

we take each region separately, if the sum of its

elements is more than 8 pixels then it will be assigned

the number 1, otherwise it will be assigned 0. Then we

convert the image to its decimal code representation:

Decimal-Code=b1+b2*2+b3*4+b4*8+b5*16+ b6*32

The final step is to convert the decimal code to its

corresponding Arabic letters to get the translation.

3.8 Correcting the Paper Layout

It might be hard for the user to recognize the correct

layout of a Braille document when placed on a

scanner. As a result some documents may be placed

reversed by 180 degrees. To correct a reversed paper,

we determine the percentage of the alphabetic in the

page. Having more than 85% indicates that the page is

in its correct position while less than 45% indicates the

opposite.

Horizontal and vertical reflections occur when the

shadow direction is not specified in the calibration.

Also, it has been shown that when the page is in its

right position then the percentage of correctly

recognized letters is more than the other positions.

4. Conclusion and Future Work
The proposed system has used some new

techniques to recognize Braille cells using a standard

scanner. The system has been tested with a wide

variety of A4 scanned Braille documents, both single

and double sided, written in the Arabic language and

scanned with different scanners. Overall, on single-

sided and double-sided documents 99% of the dots are

correctly recognized. The tests included different

variations of Braille documents; skewed, reversed or

worn-out.

We were unable to compare our work with others

due to the unavailability of others as a working

software, yet it gives almost similar results with the

commercial OBR software (which does not support the

Arabic language).

Further work will focus on Arabic/English Braille

documents, large Braille papers, converting the

recognized Braille cells (uncontracted and contracted,

Arabic and English) to text by producing translation

rules for the conversion of Braille into print for the

required language, and more collaborative user

interface.

5. References
[1] Blenkhorn, P., “A System for Converting Braille into

Print”, IEEE transactions on rehabilitation engineering, Vol.

3, No. 2, June 1995.

[2] Hentzschel, T. W., and P. Blenkhorn, “An Optical

Reading Systems for Embossed Braille Characters using a

Twin Shadows Approach”, Journal of Microcomputer

Applications, pp. 341-345. 1995.

[3] Hermida, X. F., et al, "A Braille O.C.R. for Blind

People", Proceedings of ICSPAT-96. Boston (U.S.A.).

October, 1996.

 [4] Mennens, J., et al, “Optical Recognition of Braille

Writing”, IEEE, 1993. pp. 428-431.

[5] Mennens, J., et al, “Optical Recognition of Braille

Writing Using Standard Equipment”, IEEE transactions of

rehabilitation engineering, Vol. 2, No. 4, December 1994.

[6] Oyama, Y., T. Tajima, and H. Koga, “Character

Recognition of Mixed Convex- Concave Braille Points and

Legibility of Deteriorated Braille Points”, System and

Computer in Japan, Vol. 28, No. 2, 1997.

[7] Wong, L., W. Abdulla, and S. Hussmann, “A Software

Algorithm Prototype for Optical Recognition of Embossed

Braille”, the 17th conference of the International Conference

in Pattern Recognition, Cambridge, UK, 23-26 August 2004.

 [8] C. Ng and V. Lau, “Regular feature extraction for

recognition of Braille”, ICCIMA'99, 1999.

[9] I. Dias, “A portable device for optically recognizing

Braille-Part II: Software development”, 7th Australian &

Neazlan Intelligent Information Systems Conf., pp. 18-21,

Perth, W. Australia, Nov 2001.

[10] T. Gomez, et al, “AIR-Coupled Ultrasonic Scanner for

Braille”, IEEE ultrasonic Symposium, pp. 591-594, 2001.

[11] T. Yoshida, A. Ohya and S. Yuta, “Braille Block

Detection for Autonomous Mobile Robot Navigation”, Proc.

Of the 2000 IEEE/RSJ intl. Conf. on Intelligent Robots and

Systems, pp. 633-638, 2000.

[12] J. Dubus, et al, “Image Processing Techniques to

Perform an Autonomous System to Translate Relief Braille

Figure 10. The ave
cells’ mesuares.

Figure 11. One
cell measures

 87

into Black-Ink, Called: Lectobraille”, IEEE Engineering in

Medicine & Biology Society 10th annual Inter. Conf., 1988.
[13] Optical Braille Recognition System, version 3.5, User

Manual, October 2000.

