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ABSTRACT

Stochastic gradient descent has been advanced as a computationally efficient method for large-scale problems.
In classification problems, many proposed linear support vector machines are very effective. However, they
assume that the data is already in memory which might be not always the case. Recent work suggests a classical
method that divides such a problem into smaller blocks then solves the sub-problems iteratively. We show that
a simple modification of shrinking the dataset early will produce significant saving in computation and memory.
We further find that on problems larger than previously considered, our approach is able to reach solutions on
top-end desktop machines while competing methods cannot.
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1. INTRODUCTION

Support Vector Machines (SVMs), invented by Boser, Guyon and Vapnik [1], optimize classification boundaries
to maximize the margin between classes. When used with kernels, the margin is imposed in a higher dimensional
space implied by the chosen kernel function. Maximizing the margin restricts the complexity of the mapping
between input and output spaces and acts as a regularization scheme. In this setting, the solution to the SVM
problem reduces to a quadratic programming problem and is free from local minima, a particular attraction
when compared to other machine learning methods such as neural networks.

Given a training set S = {(x1, y1), . . . , (xl, yl)} where xi ∈ Rn and yi ∈ {−1,+1}, the maximum margin
hyperplane (w, b) requires solving the following optimization problem:

minimize
w

1

2
wTw + C

l∑
i=1

ξi subject to yi(w
Txi + b) ≥ 1− ξi and ξi ≥ 0 ,∀i . (1)

Here the slack variable ξi measures the margin violation by each data point xi and C ≥ 0 is a penalty
parameter for this violation. The original SVM does not have slack variables which were introduced by [2]. The
1-norm soft margin version of SVM is very useful when the data is not lineally separable which is the case in
many real-world problems. The optimization problem setting is called 1-norm soft margin because

∑
i ξi can be

replaced by ‖ξ‖1 in (1). Introducing Lagrange multipliers α to the primal form (1), the hyperplane can be found
in the dual representation as follows:

maximize
α

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

yiyjαiαjx
T
i xj subject to

l∑
i=1

yiαi = 0 and C ≥ αi ≥ 0 ,∀i . (2)

The solution w of the primal form (1) is realized by using the solution α of the dual form (2) as follows:

w =
∑l

i=1 yiαixi. Note that in the dual form the data appears as an inner product between xi and xj without
an explicit representation in the feature space. Hence, the problem complexity is independent from the feature
dimension n. The remarkable advantage is to work on high dimensional feature space where the data might
be lineally separable without having to compute the mapping explicitly. This is called the kernel trick where a
function maps that space to the inner product as follows: K(xi,xj) = φ(xi)

Tφ(xj).



There are many nonlinear functions such as Gaussian kernel and polynomial kernel. Although nonlinear
SVM could learn complex patterns but it is computationally expensive particularly for large-scale data since the
optimization problem is a quadratic.

One of the early works for fast optimization is the kernel-Adatron algorithm based on a gradient ascent
technique [3]. Decomposition methods are also good techniques to accelerate training and the idea is to update
a subset of α while keeping the remainder constant. Then a new αi replaces an old one in the subset. These
dual variables αi that might change at each iteration are referred to as the active set. Sequential Minimal
Optimization (SMO) is an extreme algorithm which only works on two points at each iteration [4].

In the case of linear kernel as in (2), the problem is still quadratic but one can take the advantage of
accessing the feature space in order to accelerate the optimization. One of the techniques is a cutting plane
solver SVMpref [5]. It is several times faster than decomposition methods such as SVMlight proposed earlier by
the same author. Pegasos is also a fast solver that alternates between stochastic gradient steps and projection
steps to estimate the primal problem [6]. Another technique is a dual coordinate descent method with a shrinking
heuristic [7].

All these techniques can successfully handle large-scale data sets when they are stored in the memory. This
means that when the resources are limited, the algorithms will take a very long time due to severe disk-swapping.
Recent work by Yu et al. [8] addressed this issue and proposed a block minimization method. The main idea is
to divide the data set into m blocks where each block can fit in memory. Then exactly or approximately solve
the sub-problem by any of the previous algorithms and update the variables. After going through all the blocks,
the optimization procedure is repeated several times until stopping criterion is satisfied.

Our proposed method is closely related to [7,8]. We use the dual coordinate ascent method but with a harsh
shrinking heuristic to reduce the data points as soon as possible from the first pass. Then the remaining active set
is stored into a binary file and block optimization is carried out. At each iteration, the active set is reduced until
convergence. The key difference between our method and the one referred to above [8] is the block optimization
that is done after applying harsh shrinking in one pass over the data set. In many cases, the remaining active
set is a small fraction of the original set (e.g. 10%) so the block optimization might not be necessary. Even if
this is not the case, dividing the remaining active set is much cheaper than the whole data as we show in the
discussion section. In addition to that, the number of blocks is dynamic and depends on the active set size at
each iteration while they are fixed in Yu et al.’s study [8]. We have implemented a binary and a multiclass solver
and present some promising results.

The remainder of this paper is organized as follows. Section 2 describes our proposed method for both binary
and multiclass problems. Section 3 presents the experiments and compares them with three state-of-the-art
linear SVM solvers. Section 4 discusses our findings then we end the paper with a summary of our conclusions.

2. STOCHASTIC GRADIENT METHOD

The gradient method is a simple optimization algorithm to find a local minimum or maximum of a function using
its gradient. We start with initial values for α and then move in the direction of the objective function’s gradient.
This steepest ascent algorithm will reach the maximum point if the learning rate was designed carefully. The
partial derivative of (2) with respect to one variable is:

∂W (α)

∂αi
= 1− yi

l∑
j=1

αjyjK(xi,xj) . (3)

A principled gradient ascent is to update the variables after one complete iteration over the whole data
points. However, a fast strategy for convergence is to update them once they have been obtained which is called
stochastic gradient ascent. Also a good practice is to present the data points in random order each iteration.

The constraints in the dual problem (2) restrict the feasible region and have not been considered by the
previous approach. For the inequality constraints C ≥ αi ≥ 0, we ensure that αi does not leave the box by [9]:

αi ← min(C,max(0, αi + ηi
∂W (α)

∂αi
)) . (4)



The remaining linear constraints
∑l

i=1 yiαi = 0 caused by the bias b can be ignored. The solution might not
be optimal but we can represent the bias inside the input by adding one extra dimension to each data point, in
which the new vector x̂ = (x, τ) and the kernel is computed as: K(x̂i, x̂j) = K(xi,xj) + τ2. The value of τ can
be any arbitrary number and some researchers choose τ = 1 as [7] presented. Cristianini and Shawe-Taylor show
in their book [9] an elegant proof that a safe choice of τ is the radius of a ball contains the whole data points
which we can calculate as: R = max1≤i≤l ‖xi‖. They also show that the maximal gain during iterations is made
by choosing ηi = 1/K(xi,xi). The algorithm is known as kernel-Adatron and was introduced by Friess et al. [3].

2.1 Linear Kernel

Although kernel-Adatron is simple and fast but computing the gradient is expensive for large-scale data. It
requires for one update sum over all nonzero αi multiplied by the corresponding kernel. In the case of linear
kernel, we have access to the feature space. Taking this advantage, we can rearrange the gradient as follows:

∂W (α)

∂αi
= 1− yixT

i

l∑
j=1

αjyjxj . (5)

Now we can notice that the summation part remains the same after each update apart from one variable. A
trick proposed by [7] is to store the summation in a vector w and when there is an update we replaced the old
αi with the new one as shown below:

wnew = α1y1x1 + . . . αiyixi · · · = α1y1x1 + . . . αoldyixi · · ·+ (αi − αold)yixi = wold + (αi − αold)yixi . (6)

This simple trick accelerates the kernel-Adatron algorithm for linear SVM and allowed for solving a large-scale
problem [7] as shown in Algorithm 1.

Algorithm 1 Dual coordinate ascent method for 1-norm soft margin linear SVM

Require: training set S and C ≥ 0
1: repeat
2: Randomly shuffle S
3: for i = 1 to l do
4: αold ← αi

5: G = 1− yiwTxi

6: η = 1/xT
i xi

7: αi ← αi + η ·G

8: if αi < 0 then
9: αi ← 0

10: else if αi > C then
11: αi ← C
12: end if
13: w← w + (αi − αold)yixi

14: end for
15: until α converge

2.2 Shrinking Heuristic

The dual coordinate ascent algorithm can converge faster by reducing the size of the problem (i.e. inner loop in
Algorithm 1). Such a technique is known as decomposition or shrinking. When the data set is large, shrinking
becomes important and it is vital when the problem requires more memory than available.

Hsieh et al. [7] proposed a shrinking technique depends on the old gradient of the objective function before
removing any data point. They show that their algorithm terminates after finite iterations. In practice, the
removing condition might not be satisfied in the early iterations. When the data cannot fit in memory, there is
a need for disk-swapping.

We propose a shrinking heuristic from the first iteration. Less informative data points are removed from
memory as soon as possible. Hence, there is only one pass over the whole data. Since the stochastic gradient
method updates α once they have been obtained, many variables αi = 0 or αi = C have small chance to be
changed. Therefore, the corresponding data point is removed from memory. This technique might be harsh but it



is practical for large-scale data. Surprisingly, the achieved accuracy is very close to state-of-the-art solvers as we
will show in the experiments section. The remaining active set is stored in a binary file rather text for efficiency.
Then we load part of the file determined by the available memory. Each loaded sub-problem is optimized for N
inner iterations to reduce the outer iterations. Hence, the disk access times is limited. Our method is described
in Algorithm 2.

Algorithm 2 Shrinking dual coordinate ascent method for 1-norm soft margin linear SVM

Require: training set S , C ≥ 0 and N ≥ 1
1: Open a binary file BF
2: for i = 1 to l do
3: Do from line 4 to 13 in Algorithm 1
4: if αi > 0 and αi < C then
5: Store xi, yi in BF
6: end if
7: Remove xi, yi from memory
8: end for
9: repeat

10: i← 1

11: repeat
12: if αi > 0 and αi < C then
13: Read xi, yi from BF
14: i← i+ 1
15: end if
16: if memory is full or end of BF then
17: Do lines 2-14 in Algorithm 1 for N times
18: Remove all data points from memory
19: end if
20: until end of BF
21: until α converge

2.3 Multiclass Problem

Multiclass problem can be solved as several binary problems using either one-versus-rest or one-versus-one
strategies. The former requires K classifiers while the latter requires K(K − 1)/2 classifiers. We choose the
one-versus-rest strategy because it is simpler to implement and the number of the weight vectors wk is smaller.

There are two comments on the multiclass problem. First, there is only one pass over the whole data to filter
out easily classified points in each binary problem. This step saves both memory and time. Second, each binary
problem is independent from the other. Hence, we might have K threads and run the algorithm in parallel. This
step will speed up the process a lot significantly but our current implementation is based on a single thread.

3. EXPERIMENTS

We compare our proposed method with three state-of-the-art linear SVM solvers. Each one maximizes 1-norm
soft margin SVM but approaches the problem with different method. The first solver is LIBLINEAR version
1.94, which is a dual coordinate descent method with a shrinking heuristic [7]. We used it with options ’-s 3

-B 1’. The second solver is Pegasos which estimates the primal problem with stochastic sub-gradient descent
algorithm [6]. The last one is SVMpref version 3.00, which is a cutting plane method solver [5].

Seven data sets have been used in our experiments; six of them are available at LIBSVM webpage. One of
the data sets was introduced by Ma et al. [10] for detecting malicious web sites. Two data sets are from text
classification (RCV1 [11] and WEBSPAM [12]). We also used an artificial data set (EPSILON) from PASCAL
Challenge 2008 (http://largescale.ml.tu-berlin.de). Small and large handwritten digits sets were also tested
(mnist [13] and mnist8m [14]). Last data set is at KDD archive (http://kdd.ics.uci.edu) for detecting legitimate
connections in a computer network. Table 1 shows the training data statistics for each set. The test size for
each one is: 239,613 (URL), 20,242 (RCV1), 50,000 (WEBSPAM), 100,000 (EPSILON), 10,000 (MNIST and
MNIST8M) and 311,029 (KDD 1999).

All solvers are implemented in C/C++ including ours. The penalty parameter C is set to 1 following [7] (other
values have no significant gain in our experiments). The equivalent setting for Pegasos parameter λ is 1/(Cl)
and for SVMpref parameter Cpref is 0.01Cl. The following relative difference function between W (α∗) (current
iteration) and W (α) (previous iteration) is the stopping criterion defined as: (W (α∗)−W (α))/W (α∗) ≤ 0.01.

There are three observations we can make about the results in Table 1. First, our solver (LLSVM) is always
faster except in the first data set (URL) where Pegasos is faster. However, it has relatively low test accuracy



Table 1. Comparison between four solver on several data sets. In training data statistics, l is the number of instances and
n is the number of features. The reported time is in minutes (m) seconds (s). Fields with brackets ( ) means the result
is based on 25% of the data due to memory restriction in our machine (12 GB RAM). Some fields are not available (i.e.
N/A) because the software does not solve multiclass problem internally.

Data Set Training Data Statistics LLSVM (our method) LIBLINEAR [7] Pegasos [6] SVMpref [5]
class l n # nonzeros Time Accuracy Time Accuracy Time Accuracy Time Accuracy

URL 2 2,156,517 3,231,961 249,347,283 2m19s 99.54% 6m21s 99.59% 1m56s 97.51% 15m4s 99.18%
RCV1 2 677,399 47,236 49,556,258 0m22s 97.67% 0m25s 97.78% 0m46s 96.03% 1m9s 97.72%
WEBSPAM 2 300,000 16,609,143 1,117,924,883 10m44s 99.00% ( 2m43s ) ( 98.30% ) N/A N/A N/A N/A
EPSILON 2 400,000 2,000 800,000,000 5m29s 89.75% ( 1m48s ) ( 89.30% ) ( 4m10s ) ( 82.91% ) ( 3m5s ) ( 89.29% )
MNIST 10 60,000 784 8,994,156 0m33s 92.07% 0m41s 92.18% N/A N/A N/A N/A
MNIST8M 10 8,100,000 784 1,612,242,143 174m25s 90.86% ( 50m28s ) ( 88.95% ) N/A N/A N/A N/A
KDD 1999 2 4,898,431 41 61,138,555 0m30s 92.29% 0m37s 92.05% 0m41s 86.80% 1m31s 92.07%

(97.51%) compared to ours (99.53%). In fact, Pegasos always has the lowest accuracy and consumes more memory
in our experiments. Second, we achieve comparable accuracy with state-of-the-art solvers and sometimes higher.
Third, the proposed method could solve very large problems such as WEBSPAM, EPSILON and MNIST8M in
reasonable time.
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Figure 1. The active set (above) and the objective function (below) for 10 iterations in our solver and in LIBLINEAR.

Table 2. Non-active dual variables in our method compared to LIB-
LINEAR and the fraction of variables we mismatched.

Data Set URL RCV1 MNIST d8 KDD 1999
Our method 2,048,691 665,002 57,955 4,886,751
LIBLINEAR 2,018,715 662,902 55,910 4,893,975
Mismatch 0.0441 0.0183 0.0531 0.0023

Table 3. Block minimization method [8].

Data Set WEBSPAM EPSILON
Split 19m12s 14m10s
Train 4m48 3m26
Total Time 24m0s 17m36s
Accuracy 99.04 % 89.75 %

4. DISCUSSION

Shrinking the training data early is the main reason for the proposed method’s achievement. Figure 1 shows
the percentage of active set for the first 10 iterations in our solver compared with LIBLINEAR. The amount



of reduction for some data sets is huge due to the nature of the problem. For example, almost 99% of KDD is
removed from the first iteration. Although the adopted harsh shrinking method reduced our objective function
value (2) as illustrated in Figure 1, it seems to have little impact on the test accuracy while it largely saves
memory and time. The non-active dual variables that we found from the early stage are surprisingly very similar
to LIBLINEAR’s solution which takes several iterations to discover the active set, as Table 2 shows.

Block minimization proposed by Yu et al. [8] is an alternative method to ours as discussed in the introduction.
Table 3 reports training time and accuracy for two large-scale problems. It took 19 minutes to just split
WEBSPAM and 14 minutes to split EPSILON while in Table 1 the whole training time is about 10 minutes
(nearly half) and 5 minutes (nearly a third), respectively. Although we do block minimization when a data set
after shrinking cannot fit in memory, dividing the remaining active set is much cheaper than the whole data.

Finally, we considered a safe choice τ = R in order to represent the bias in the input, x̂ = (x, τ), where R
is the radius of a ball containing all data points. The importance of this choice rises when the data are not
normalized. For example, we tried the original features in MNIST, which are scaled 0-255, to see how our solver
behaves. We achieve 89.95% accuracy while LIBLINEAR achieves 85.21%.

5. CONCLUSION

We present a memory-efficient method for large-scale linear SVM. Experiments show the proposed method is
comparable to state-of-the-art solvers but faster. Our shrinking heuristic could reduce up to 99% of some data
sets from the first iteration. This allows the solver to process large amounts of data much faster than previous
implementations. The current work focuses on two issues. First, we investigate more careful shrinking while
retaining the performance. Second, we extend the approach to nonlinear SVM.
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